On a generalisation of self-coupled conformally covariant spin-2 equations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1983 J. Phys. A: Math. Gen. 16 L37
(http://iopscience.iop.org/0305-4470/16/1/008)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on $30 / 05 / 2010$ at 16:12

Please note that terms and conditions apply.

LETTER TO THE EDITOR

On a generalisation of self-coupled conformally covariant spin-2 equations

Mark S Drew
Department of Computing Science, Simon Fraser University, Burnaby, BC, Canada V5A 1S6

Received 2 November 1982

Abstract

The symmetric tensor equation of Drew and Gegenberg was recently reinterpreted by Barut and Xu as the usual Fierz-Pauli field coupled to itself and to a scalar field. Here, this equation is generalised such that the scalar interaction has a non-unique coupling constant λ; this coupling constant affects both the field equations and the traceless version of the energy-momentum tensor with resulting effects on possible vacuum solutions.

Recently, Barut and Xu (1982) put forward an interesting interpretation of the alternative equation for a symmetric tensor field $h_{a b}$ postulated by Drew and Gegenberg (1980). This equation is

$$
\begin{equation*}
\square h_{a b}-\frac{2}{3} \partial_{(a} \partial^{e} h_{b) e}+\frac{1}{3} \partial_{a} \partial_{b} h+\frac{1}{3} \eta_{a b} \partial_{p} \partial_{q} h^{D q}=0, \tag{1}
\end{equation*}
$$

where
$h_{a b}=h_{b a}, \quad h \equiv h_{a}^{a}, \quad \eta_{a b}=\operatorname{diag}(-1,-1,-1,1), \quad \partial_{(a} h_{b) e}=\partial_{a} h_{b e}+\partial_{b} h_{a e}$.
The above equation has the feature that it is conformally covariant, in the sense of Mack and Salam (1969); the usual linearised Einstein equation (the massless free Fierz-Pauli equation),

$$
\begin{equation*}
\square h_{a b}-\partial_{(a} \partial^{e} h_{b) e}+\partial_{a} \partial_{b} h=0, \tag{2}
\end{equation*}
$$

is not conformally covariant.
By interpreting the difference between the new equation and the usual massless spin-2 equation (2) as a source term to be placed on the right-hand side of the Fierz-Pauli equation (2), Barut and Xu suggest that the equation of Drew and Gegenberg be interpreted as the symmetric tensor field coupled to itself and to a scalar field given by its trace. In this paper, it is pointed out that a generalisation of equation (1) leads to a non-unique coupling constant with the scalar field. This generalises the scalar interaction in Barut and Xu (1982).

The field equation postulated in Drew and Gegenberg (1980) was determined by requiring that the equation for $h_{a b}$ could be factored via the spin-representation matrices $s_{j k}$ in the same way as it was shown to be possible for the electromagnetic field, namely

$$
\begin{equation*}
\left(-\mathrm{i} s^{p q} \partial_{q}+n \partial^{p}\right)\left(-\mathrm{i} s_{p r} \partial^{5}+n \partial_{p}\right) \Phi=0, \tag{3}
\end{equation*}
$$

with n a constant and Φ either massless field. For a symmetric tensor field $h_{a b}$ this equation yields equation (1).

Now, Barut and Xu make use of the traceless version of (1),

$$
\begin{equation*}
\square h_{a b}-\frac{2}{3} \partial_{(a} \partial^{e} h_{b) e}+\frac{1}{3} \partial_{a} \partial_{b} h+\frac{1}{3} \eta_{a b}\left(\partial_{p} \partial_{q} h^{p q}-\square h\right)=0 . \tag{4}
\end{equation*}
$$

This equation arises from a Lagrangian density L which can be put in the simple form

$$
\begin{equation*}
\boldsymbol{L}=\frac{1}{3}\left(\pi^{p q}\right)^{r}\left(\pi_{p q}\right)_{r}, \tag{5}
\end{equation*}
$$

with $\left(\pi^{p q}\right)^{r}$ the canonical momentum density with respect to $\partial_{\mu} h_{p q}$. Here, $\left(\pi^{p q}\right)^{r}$ can be given in terms of the combination

$$
\begin{align*}
& G_{j k n}=h_{j k, n}-h_{j n, k} \equiv-G_{j n k}, \tag{6}\\
& G_{i n}^{j} \equiv G_{n}, \quad h_{j k, n} \equiv \partial_{n} h_{j k},
\end{align*}
$$

as

$$
\begin{equation*}
\left(\pi^{p q}\right)^{r}=\frac{1}{2} G^{(p q) r}-(1 / k) \eta^{p q} G^{r}+(1 / 2 k) \eta^{r(p} G^{q)} \tag{7}
\end{equation*}
$$

with $k=3$. If one were to take $k=1$ instead, the usual equations (2) result. In the above formalism, the divergencelessness condition imposed on (4) by Barut and Xu amounts to

$$
\begin{equation*}
G_{, n}^{n}=0 \tag{8}
\end{equation*}
$$

The trace part of (1) simply implies

$$
\begin{equation*}
\square h=0 \text {, } \tag{9}
\end{equation*}
$$

which is easily shown to be conformally covariant if h is the trace of a symmetric tensor field; equation (9) is also the correct conformally covariant equation for a massless scalar free field h. Therefore, if the difference between (4) and (2) is to be interpreted as the conformally covariant interaction term between $h_{a b}$ and itself and the scalar part h, then one should also include an additional multiple of $\square h$, and write the full equation as

$$
\begin{equation*}
\square h_{a b}-\frac{2}{3} \partial_{(a} \partial^{e} h_{b) e}+\frac{1}{3} \partial_{a} \partial_{b} h+\frac{1}{3} \eta_{a b} \partial_{p} \partial_{q} h^{D q}+\lambda \eta_{a b} \square h=0 . \tag{10}
\end{equation*}
$$

Here, an additional coupling constant λ has been introduced, generalising the interaction given in Barut and Xu (1982); the restricted equation (4) in Barut and Xu results from $\lambda \equiv-\frac{1}{3}$. The presence of a coupling constant may have important bearing on the possibility of finding explicit solutions of the field equations (cf Barut and Xu 1981a, b).

To this end it would be useful to have an expression for a traceless energymomentum tensor which could be set to zero in order to limit possible vacuum solutions. It is convenient to write a Lagrangian \boldsymbol{L} as

$$
\begin{equation*}
\boldsymbol{L} \equiv \frac{1}{2}\left(\pi_{j k}\right)_{n} h^{i k, n} \equiv \frac{1}{2} \pi_{n} \psi^{n}, \tag{1}
\end{equation*}
$$

with the coupling constant λ incorporated via

$$
\begin{equation*}
\left(\pi_{j k}\right)_{n} \equiv P_{j k n}^{a b c} h_{a b, c}=\partial \boldsymbol{L} / \partial\left(\partial^{n} h^{j k}\right), \tag{12}
\end{equation*}
$$

with

$$
\begin{align*}
P_{j k n}^{a b c}=P_{j k n}^{b a c}= & P_{k j n}^{a b c} \\
= & \frac{1}{6} \delta_{n}{ }^{(a} \delta_{(j}{ }^{b)} \delta_{k)}{ }^{c}+\frac{1}{6} \eta_{n(j} \delta_{k)}{ }^{(a)} \eta^{b) c}-\frac{1}{6} \eta_{n(j} \eta^{a b} \delta_{k)}{ }^{c} \\
& -\frac{1}{4} \delta_{(j}{ }^{\left({ }^{(a} \delta_{k}{ }^{b)} \delta_{n}{ }^{c}-\frac{1}{6} \eta_{j k} \delta_{n}{ }^{(a} \eta^{b) c}-\lambda \eta_{j k} \eta^{a b} \delta_{n}{ }^{c} .\right.} \tag{13}
\end{align*}
$$

In (11) and below, whenever contraction of $\left(\pi_{j k}\right)_{n}$ and $h^{i k}$ occurs, the product is written as $\pi_{n} \psi$.

Written our explicitly, one has

$$
\begin{align*}
& \boldsymbol{L}=-\frac{1}{2} h_{j k, n} h^{j k, n}-\frac{1}{3} h_{, k} h_{n}{ }^{k, n}+\frac{1}{3} h_{n j, k} h^{j k, n}+\frac{1}{3} h_{k}{ }^{j}{ }_{j i} h_{n}{ }^{k, n}-\frac{1}{2} h_{, n} h^{, n}, \tag{14}\\
& \left(\pi_{j k}\right)_{n}=\frac{1}{3} h_{n(j, k)}+\frac{1}{3} h_{(k, c}^{c} \eta_{n j)}-\frac{1}{6} \eta_{n(j} h_{, k)}-h_{j k, n}-\frac{1}{3} h_{n, c}^{c} \eta_{j k}-\lambda \eta_{j k} h_{, n} . \tag{15}
\end{align*}
$$

As the first step in finding a traceless energy-momentum tensor $\theta^{i k}$, one must consider the product $\pi_{n} \psi$ (Callan et al 1970). For a free scalar field ϕ,

$$
\begin{equation*}
\boldsymbol{L}=\frac{1}{2} \pi_{n} \partial^{n} \phi, \quad \pi_{n}=\partial_{n} \phi \tag{16}
\end{equation*}
$$

so that

$$
\begin{equation*}
\pi_{n} \phi=\frac{1}{2} \partial_{n}\left(\phi^{2}\right) \tag{17}
\end{equation*}
$$

Similarly, for (13) one has

$$
\begin{equation*}
P_{i k n}^{a b c} h^{i k}=\left(\pi^{a b}\right)_{n} \tag{18}
\end{equation*}
$$

so that

$$
\begin{equation*}
\frac{1}{2} \partial_{c}\left(P_{j k n}^{a b c} h_{a b} h^{i k}\right) \equiv \pi_{n} \psi \tag{19}
\end{equation*}
$$

Therefore, the most straightforward way to find a (non-symmetric) conserved traceless $\theta_{j k}$ is analogy with the scalar case, namely

$$
\begin{equation*}
\theta_{j}^{k}=t_{j}^{k}+\boldsymbol{X}_{j}^{k} \tag{20}
\end{equation*}
$$

where t_{j}^{k} is the canonical energy-momentum tensor

$$
\begin{equation*}
t_{j}^{k}=\pi^{k} \partial_{j} \psi-\partial_{j}^{k} \boldsymbol{L} \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
X_{i}^{k} \equiv-\frac{1}{6}\left(P_{c d e}^{a b k} \partial_{j} \partial^{e}-P_{c d f}^{a b e} \delta_{j}^{k} \partial_{e} \partial^{f}\right)\left(h_{a b} h^{c d}\right) \tag{22}
\end{equation*}
$$

Here, it is easy to show explicitly that $t_{j k}$ is conserved by virtue of the field equations $\pi^{k}{ }_{, k}=0$ by using the first of the relations

$$
\begin{equation*}
P_{j k n}^{a b c} h^{i k, n}=\left(\pi^{a b}\right)^{c}, \quad P_{j k n}^{a b c} h_{a b}{ }^{, n}=\left(\pi_{j k}\right)^{c} \tag{23}
\end{equation*}
$$

Now, $\boldsymbol{X}_{j k}$ is identically conserved,

$$
\begin{equation*}
X_{j, k}^{k} \equiv 0 \tag{24}
\end{equation*}
$$

and its trace is

$$
\begin{equation*}
X_{i}^{j}=\partial_{j}\left(\pi^{i} \psi\right) \tag{25}
\end{equation*}
$$

while the trace of $t_{j k}$ is

$$
\begin{equation*}
t_{j}^{j}=-\pi^{j} \partial_{j} \psi \tag{26}
\end{equation*}
$$

Therefore $\theta_{j k}$ is traceless if the field equations hold for $\psi \equiv h_{j k}$, and (20) does indeed give a traceless, conserved energy-momentum tensor.

To illustrate how the presence of λ might affect the existence of possible solutions, consider the simplest case $h_{a b}=\eta_{a b} f(x)$. In that case, the field equations (10) read

$$
\begin{equation*}
\frac{4}{3}(1+3 \lambda) \eta_{a b} \square f=0 \tag{27}
\end{equation*}
$$

(and recall that Barut and Xu have $\lambda \equiv-\frac{1}{3}$). The traceless energy-momentum tensor reads in this case

$$
\begin{equation*}
\theta^{c}{ }_{d}=\frac{16}{9}(1+3 \lambda)\left[\delta^{c}{ }_{d} \frac{1}{2}\left(\partial_{n} f \partial^{n} f\right)-2 \partial_{d} f \partial^{c} f+f\left(\partial_{d} \partial^{c} f-\delta_{d}{ }^{c} \square f\right)\right] . \tag{28}
\end{equation*}
$$

Therefore, it can be seen that without the extra coupling constant λ it is not possible in this case to find solutions of the field equations in conjunction with the conditions $\theta^{c}{ }_{d}=0$.

References

Barut A O and Xu B W 1981a Phys. Lett. 102B 37
——1981b Phys. Rev. D 233076
1982 J. Phys. A: Math. Gen. 15 L207
Callan C G, Coleman S and Jackiw R 1970 Ann. Phys., NY 5942
Drew M S and Gegenberg J D 1980 Nuovo Cimento 60A 41
Mack G and Salam A 1969 Ann. Phys., NY 53174

